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The method of investigating bifurcations developed in (1 and 23 1s applicable 
to many hydrodynamic problems. In the present paper-it 1s applied to lnves- 
tlgate the origin of convection In a horizontal fluid layer heated from 
below. 

Secondary stationary flows are of particular interest ln the convection 
problem since the loss of stability As associated with these flows: “the 
principle of the change in stability Is not only valid here but has been 
proved rigorously f3]. It has also been proved that second 

"fj% 
stationary 

flows are generated by branching off from the state of rest and 51. 
The problem under consideration Is Invariant relative to the group Of 

motions of a horizontal plane. 

The single solution invariant relative to this whole group Is the rest 
solution. When this solution Is unstable, It Is natural to expect the occur- 
rence of solutions invariant relative to some subgroup of the group of mo- 
tions, If the mentioned sub roup Is generated by a pair of translations 
(in perpendicular directions '3 , we arrive at doubly-periodic solutions (See- 
tlon l), and if lnvarlance relative to rotation through a certain angle Is 
required in addition, we arrive at solutions of hexagonal type (Section 2). 
As is known, precisely these latter are realized ln convection experiments 
c61. Deductions on the existence of doubly-pertodlc oonvectlon Slows are 
elucidated In Theorem 1.1, and the existence of solutions of hexagonal con- 
vection type Is asserted in Theorem 1.2. The applied method ha8 slight con- 
nection with the boundary conditions. Ckily for definiteness la It assumed 
that the boundaries of the layer are solid walls on each of which the tem- 
perature is specified. 

1. Convootlon in 8 horiaoaW ly*o. 1. 0 n the formula- 

tion of the problem . Let a Pluld be enclosed between 

two fixed, horizontal solid planes t - 0, h , on each of which the temper- 

ature is constant. 

The convection equations then have the stationary solution 

vg = 0, T, = cz + cn, p0 = - fig (l/zcz’ -j- w) + con& (1.1) 
Bere xl, x2, x3- a are Cartesian coordinates; the a-axis Is directed 

vertically downward. Seeking a new stationary solution (v', T', p') as 

Y' = vg + v, T' = To + T, P'=Po f P (1.2) 

1193 
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we arrive at the following system of equations 

The boundary conditions on the solid walls are 

v = 0, 7'=(j (z =:o, iL) il.ij 

Furthermore, we assume V, T to be periodic in x,, xz with periods 

2rr/k, and 2rr/k, , respectively (k,, ka are wave numbers), and that the 

fluid layer as a whole cannot be displaced along the xl, x2 plane 

-lLz h 

s 1 

z/h’, 11 

v$lx,dx3 - 
s s 

z+d5&T3 : 0 
a, (1.5) 

--YE / I:, 0 --: / A’, 0 

Henceforth, we seek bifurcation values of the parameter c , the tempera- 
ture gradient. 

2. Fundamental functional spaces and 

operator equations . Let us introduce the following Hll- 
bert spaces. 

a) The space H, In which the set of smooth solenoldal vectors, periodic 

with periods a/k, In xl, xa and satisfying conditions (1.4), (1.5) Is 

everywhere dense, and the scalar product Is 

(1 .(i) 

Here Cl Is a paralleleplped; 

(0 .< 53 = 2 < 12, \ XI I G( JC/k,, 1 X2 ] < n//i,). 

b) The subspace HI0 of the space H, consisting of vectors satisfying 

the following evenness and oddness conditions: 

U1 (x,, x2. 2) = - v1 (-51, 52, 2) = u1 (51. --x2, 4 

02 (Zl, 227 2) = u2 (-Xl, 52, z) = -L’2 (x:1, --X2, z) (1.7) 

u3 (519 527 z) = u3 (-x1, z2, z) = u3 (XI. -52, z) 

c) H, Is the closure of the set of smooth functions defined In the layer 

OSISA, periodic with periods a/k,, 2m/ko In xl, xp and vanishing for 

t-0, h, Into the metric 

(Z", T”JH2 = \ ~T’~T”clx (13 
h 

d) The subspace Ha" of the space H, consisting of even functions in 

x1 and C.C. . 

The problem (1.3) to (1.5) can be reduced to an operator equation with a 

completely continuous operator by many methods. For example, as has been 

shown In [5], the problem (1.3) to (1.5) Is equivalent to the operator equa- 

tion 
v = K (v, c)= CAV + Rv (1.9) 

where K Is an operator completely continuous In H,; OA Is Its Frechet 
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differential at the point V = 0 ; A is Independent of c . 

Let us write the definition of the operators K and A . Let us fix 

some vector v 6 H, and let T' E If, be a generalized solution of the 

equation XAT'--v.vT'= j (1. 1U) 

with perlodlclty boundary conditions and (1.4). If f EL*!, (n), then as 

has been shown In [5], this generalized solution exists and 1s unique. The 

linear operator B,, has thereby been defined and Lo),(Q) --*II? 

T’ = B,f (1.1 I) 

We now obtain from the second equation of (1.3) 

T = cB,v3 E c.Mv (1.111) 

Let us now determine the operator L which sets the vector VEfi, 3 
the generalized solution of the linearized Navler-Stokes equations with 

right side f' : 
vAv-_Cp=f, div v = 0, v = Lf (1.12) 

with boundary conditions (1.4) and (1.5), In correspondence with the arbi- 

trary vector f E Ls;, (61) (“1 . It Is now easy to see that 

K (v, c) = L (v, V) v + CL (P g B~Q), A, = L(PgB&, B,,=B,.jV~” 

Kv = L (v, V)v + CL (fig (B, - &)uJ (1.,14) 

The operator A Is self-adjolnt, strictly positive, and Its spectrum 

conslstes of a sequence of positive elgenvalues. 

Utilizing the principle of compression mappings, we obtain the following 

expression for the operator B,! which Is valid for small v E H,: (1.15) 

s,f=B,,f-fB,fi-...-tB,f_t..., Bkf=Bo(v.~Bk-f)(k=1,2,...! 

3. Bifurcation . According to a theorem of Krasnosel'skll on 

bifurcation [7], every prime characteristic number of the RBchet dlfferen- 

tlal of A Is a bifurcation point of (1.9). Since the operator A Is self- 

adjolnt, Its characteristic number Is prime If just one elgenvector corre- 

sponds to It. 

It Is verified directly that the operators X, A transform the space 4" 

Into Itself. Later In this section, we shall consider the equation (1.9) In 

x,0. From the definition (1.14) of the operator A It Is lmpllclt that the 

operator equation 
v= CAV (1.1(j) 

Is equivalent to the linearized system 

vAv - v7p = PTg, xAT = cv3, div v = 0 (1.17) 

with the boundary conditions (1.4) and (1.5). By a well-known method this 
latter Is reduced to the single equation 

*) If the problem for the layer Is represented as the limit of appropriate 
problems for cylinders with unboundedly Increasing radii, then the llmltlng 
form of the adhesion condition on the lateral surfhe of the cylinders is(l.5). 
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A”T’::= IQ’: / xv (Tv,,v, $- 7“,: .,.,) (1.18) 

with perlodicity boundary conditions and 

T zz ~11 :-z _jy', =z ('j (2 = 0, h) (1.19) 

Because v E IfI', us Is an even function in x1, x2 ; then, according 

to (l-17), P is also even in xl, x2 . Hence, T should be sought In the 

form 
T = T (z) COS n,k,x, cos IL&& (1.20) 

In which the function T(Z) is a solution of the elgenvalue problem 

Here n,, nz are natural numbers. Exactly as in [;I, it can be shown that 

the Green's function of problem (1.21) Is oscillatory (it Is the composition 

of two symmetric oscillatory Green's functions). Hence, the spectrum of 

problem (1.9) Is a sequence of positive and prime elgenvalues 

A, (@) < &! (0) < * - f < ~~(0) < * * f * 

Thus, the spectrum of the problem (1.3) to (1.5) consists of the eigen- 

at 

values 

L_ 

V 

C nonln* = -fp+ 7 e2 = (wQl)2+ (~dw 

(no, ?Zl, He = 1, 2,.*.) (1.22) 

a4 --- If Gl&,, is a multiple elgen number, then natu- 

I ral numbers (no’, n,‘, n,‘) $I (no, n,, np), should 

B also be found such that (1.23) 

a+ A,? (0') 
C ,,&,a, = c,,,,,n#,ns*, cp (kl, k2) G +j$ - - = w2 0 

Fig. 1 
fY2 = (~~‘k~)z -+ (~~‘k~)z 

'X2 Let us fix the arbitrary numbers nl, n,' 

(t = 0, 1, 2) . Exactly as In [2] , It is shown 

that k,(e) is an analytic function on the ray 

e>o, and hence, the function cp(kl, hz) is 

analytic wlthln the quadrant (k,> 0 , k,> Of . 
;c, As in [2], the function cp may not be identically 

zero. We thereby arrive at the following theorem. 

Theorem 1.1. For almost all pairs 

(kl, kz) each of the eigen numbers 
Fig. 2 

c%,~,~, is prime, 

and this means it is a bifurcation point of (1.9): 

for value5 of c close to c,~%,~, Equation (1.91, 

and so problem (1.3) and (1.5), have a nontrivial solution. 

Here the expression Wfor almost all pairs (kl, ka)ll IS understood ln the 

sense that on any analytic curve in the (k,, k,) plane there lies not more 
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than a countable set of exclusive points. 

As calculations show (33, the graph of the function X = x,(9) has the 
form indicated in Flg.1. It Is hence clear that in every case k+ Is a 

bifurcation point. 

2. ColltrZu‘ ooaY~otion* It is well known and easily discerned from 

(1.22) that secondary flows with diverse periodicity and symmetry correspond 

to the very same critical value of the temperature gradient c . In this 

Section, secondary flows possesslng.hexagonal symmetry are examined. For 

such flows the layer Is divided into regular hexagonal prisms, and the fluid 

motion In all such prisms proceeds Identically. These flows (designated 

hexagonal or cellular convection) are of particular interest since precisely 

these are observed in experiments (61; apparently cellular convection even 

occurs in the Earth's atmosphere, resulting In the formation of certain kinds 

of clouds. 

Let a be the side of a hexagonal cell (Fig.2). Then the periods In 

21, x2 should be 3a, a/3 , respectively. Moreover, the solution should be 
invariant relative to rotation through an angle a/3 around the z-axis, 

This latter demand reduces to the conditions (2.1) 

7' 0% 4 = 2' (~3 z), us (gs, z) = v3 (2, 4, w ($P, 4 = 6W (x7 9 

Here and henceforth, we use the notation: 2= (51, s,); w = (VI, r:,); 

Q is the transformation of a rotation through the angle 2n/3 around the 

a-axis (Z.3) 

g (53 4 = &% 2) = (q cos 2&c - x2 sin 2/33t, xl sin 2/3~ + x2 cos 2/351, Z) 
We Call the function T(x, z) (the vector V(X, z) , correspondingly) 

hexagonally symmetric If It satisfies condition (2.1) and Is periodic in 

Xl, x2 with the periods 3s , aJ3 , respectively. 

Par the smooth function Tfr, a) to possess hexagonal symmetry It Is 

necessary and sufficient that It be expanded in the series 

(2.3 

Here the sum extends over all possible pairs of integers nX, n, of the 

same evenness (this follows from the requirement that the lattice (n,,n,J3) 

be transformed Into itself by the transformation 0). For the proof It Is 

enough to substltute a Fourier series of the function T into the equality 

T (.r, z) = ','3 fT (5, z) + T (gz, z) + T (g-l x, z)] (2. 5) 

which results from (2.1). 

The coefficients c(n, z> are determined uniquely by the function T . 

The Fourier expansion of the hexagonal vectors may be considered analogously, 

Let us now introduce the s*ibspaces Q, c HI', Q, c j],,", consisting, 

respectively, of hexagonal vectors and functions. 
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For any function T E Q2 the expansion (2.3) becomes 

x co.9 
k (q + 3n2) q 

2 
+ co.9 

k (nl - 34 XI cos k (~zl+ 4 vj ~2 

2 2 

(2.5) 

The ooefflclents o(n, E) are here real, and the sumnation Is over all 

poaalble pairs of natural numbers of the same evenness. For n,- n,- 1 the 

function qnln,(z) becomes 

'PII (z) = cos DC (x1 + 52 fl)l + cos [ii (Xl - 52 VZ)] + cos (2kxJ (2.6) 

which Is customarily (although without sufficiently rigorous foundation) 

used to determine the sides of the hexagonal cell (ee [3], for example). 

Lemma 2.1. The operators K, A, R operate In the subspace a1 

and the operator N from & In 0. . 

Proof The transformation u generates an operator rS operating 
on the functlo; 1(x, z) and an operator rr 
VIZ, I) according to the bules 

operating on the vector 

rg = rgf = f (Pl 4, vg = rgv = Ww (gx, 21, v3 (gx, z), (2.7) 

Condition (2.1) for the hexagonal symmetry of the function f or the 
vector v is now written as I - Y, , v-v,. The relationships 

vjg=rgVV 9 A!, = (A!),, rg (v .VT) = vg ‘VTg 

Avg = ( Av)~ 
(2.8) 

rgh v) v = (vg, oh,, 

are verified directly. 

Let us consider t e operator N as an example. Let vEQ1. Let us 
2 1.10) for Y = V3 . Utilizing the Identities (2.8 f 

pply 
the operator r, to and 
taking Into account that v,= v , we obtain 

xAT,' - v.uTg’ = vQ (2.9) 

,"r:ciir"ly the function T' satisfies the perlodlclty bo dary conditions 
e virtue of the‘unlqueness of the solution (2.9 under these "r 

conditions, r,'= T’; 
Lemma Is proved. 

the evenness of the function T’ In _q, xa Is evident 

Let us now consider (1.9) In the space Q1 . As In Section 1, the corre- 

sponding linearized problem reduces to (l-17). Hexagonal solutions of this 

latter are T rt,lll = z (z) ‘p,,,, (41 VW*& = L @T,,,,g) (2.10) 

where n,, n, are any natural numbers of the same evenness; L Is the oper- 

ator defined In (1.131, and the function T(Z) is the elgen solution of the 

problem (1.21) for Ba= (n,"+ 3na2)k2. 

Reasoning further, exactly as In the proof of Theorem 1.1, we obtain the 

following assertion. 

Theorem 2.1. For any value of the side a of the hexagonal 

cell enclosing some countable set, Equation (1.16) in Q1 has a sequence of 
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positive prime elgenvalues, each of which Is a bifurcation point of Equation 

(1.9); for values of the parameter c close to them Equation (1.9) (and 

the problem (1.13) as well) has small nonzero hexagonal solutions. 

An analogous result may also be obtained for Wtrlangular convection", 

which lo a particular case of hexagonal convection. 
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