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The method of investigating bifurcations developed in [1 and 2] is applicable
to many hydrodynamic problems. In the present paper it is applled to 1lnves-
tigate the origin of convection in a horizontal fluld layer heated from
below.

Secondary stationary flows are of partlicular interest in the convection
problem since the loss of stability &s associated with these flows: “the
principle of the change in stability’ is not only valld here but has been
proved rigorously {3]. It has also been proved that secondafi stationary
flows are generated by branching off from the state of rest and 5].

The problem under consideration is invariant relative to the group of
motions of a horizontal plane.

The single solution invariant relative to this whole group is the rest
solution. When this solution is unstable, it is natural to expect the occur-
rence of solutions invariant relative to some subgroup of the group of mo-
tions. If the mentioned subgroup is generated by & pair of translations
{in perpendicular directions}, we arrive at doubly-perliodlic solutions (Sec-
tion 1), and if invariance relative to rotation through a certain angle is
required in addition, we arrive at solutions of hexagonal type (Section 2).
As 1s known, precisely these latter are realized in convectlon experiments
[6]. Deductions on the existence of doubly-pertodic convectlon flows are
elucidated 1n Theorem 1.1, and the existence of solutions of hexagonal con-
vection type 1s asserted in Theorem 1.2. The applied method has slight con-
nection with the boundary conditions. Only for definiteness is 1t assumed
that the boundaries of the layer are solid walls on each of which the tem-
perature is specifled.

1. Conveotion in a horisontal layer. 1. On the formula-
t1l1on of the problem . Let a fluld be enclosed between
two fixed, horizontal solid planes =z = 0, » , on each of which the temper-
ature 1s constant.

The convection equatlons then have the stationary solution
vo =0, Ty=cz-+cy, po=—Pg(scz®+ coz) + const (1.1)

Here x,, Xp, X¥;= 2 are Cartesian coordinates; the z-axls 1is directed
vertically downward. Seeking a new stationary solution {v’, 7’, p’) as

V' =vy -+ v, " =T+ T, P =po+p (1.2)
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we arrive at the following system of equations

vAv — 7p = (v, V) v + pTg, IAT — v 7T = cu, (1.
The boundary conditions on the solid walls are
v =0, I'=290 (z =0, ) (1. %)

Furthermore, we assume v, 7 to be perlodlic in x,, x, with periods
2n/k1 and Em/kz , respectively (k,, %, are wave numbers), and that the
fluid layer as a whole cannot be displaced along the x,, x, plane

=/k: h n/k h
S Svldx._,dxg = S SU'_)dxldxg = 0 (1.5)
—n/ k0 —=/ k0
Henceforth, we seek bifurcation values of the parameter ¢ , the tempera-
ture gradient.

2. Fundamental functional s paces and
operator equatilons . Let us introduce the following Hil-
bert spaces,

a) The space H, 1n which the set of smooth solenoildal vectors, periodic
with periods 2n/k, in x,, x, and satisfying conditions (1.%4), (1.5) is
everywhere dense, and the scalar product is

o v = § 5(9:7 %dx (1.6)
Q k=1
Here (Q 18 a parallelepilped;

0z =2<h, [ < afky, || < /hy)e

b) The subspace H,° of the space H, consisting of vectors satisfying
the following evenness and oddness conditions:

v (Zyy Zgy 2) = — vy (—&y, Te, 2) = U; (21, — Ty z)
Uy (T, Ty 2) = Vo (—Zyy Ty, 2) = —Vy (T, —Tp 2) (1.7
U3 (L1, Zoy 2) = Vg (— Ty, Ty 2) = Uz (27, — Ty, z)

c) H, is the closure of the set of smooth functions defined in the layer
O <2 <) , periodic with periods 2n/k1, 2n/h, in x,, x, and vanishing for
z = 0, h , into the metric

(1", T, :ﬂ VT T"dx (1.8)
H
d) The subspace H,” of the space K, consisting of even functions in

x, and x5 .

The problem (1.3) to (1.5) can be reduced to an operator equation with a
completely continuous operator by many methods. For example, as has been
shown in [5], the problem (1.3) to (1.5) is equivalent to the operator equa-

tion v=K(v, ¢) =cAv + Rv (1.9)

where X 1s an operator completely continuous in #,; o4 1s 1ts Fréchet
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differential at the point v = 0 ; 4 1s independent of ¢

Let us write the definition of the operators K and A . Let us fix
some vector vy @ }{1 and let 7' & ff2 be a generalized solutlon of the
equation Y AT — v -JT" = | (1.10)

with periodicity boundary conditions and (1.4). If f e L, (Q), then as
has been shown in [5], this generalized sclution exists and is unique. The
linear operator [3, has thereby been defined and qu(Q) ~>112

T' — Bof (1.11)
We now obtain from the second equation of (1.3)
T = cByvs = cMv (11_2)

Let us now determine the operator L which sets the vector vV & 1[1,
the generalized solution of the linearized Navier-Stokes equatlons with

right side ¢ SAv — p =i divv = 0, v = L (1.13)

with boundary conditions (1.4%) and (1.5), in correspondence with the arbi-
trary vector f & Ls, (Q) (*) . It 1s now easy to see that

K(v,c)=L(v,V)v + cL(Bg Byvs), Ay =L{BgBws), Bo=DB|,

BRv =L (v, V)v 4 cL (fg (B, — Ba)vy) (1.14)

The operator A4 1is self-adjoint, strictly positive, and 1ts spectrum
consistes of a sequence of positive elgenvalues.

Utilizing the principle of compresslion mappings, we obtain the following
expresslon for the operator [y, which 1s valid for small v & }{1; (1_15)

Bof =Bof +Byf -...--Byf+ ..., Byf =By (v-\VBxaf) (k=1,2,...)

3. Bifurcation . According to a theorem of Krasnosel'skii on
bifurcation [7], every prime characteristic number of the Fréchet differen-
tial of 4 1s a bifurcation point of (1.9). Since the operator 4 1s self-
adjoint, its characteristic number is prime if just one eigenvector corre-
sponds to 1it.

It 1s verified directly that the operators Kk, 4 transform the space #°
into itself. Later in this sectlon, we shall consider the equation (1.9) in
H,°. From the definition (1.14) of the operator 4 1t 1s implicit that the
operator equation v = cAv (1.16)

is equivalent to the linearized system
vAv — p = pTg, AT =cv; div v=20 (1.17)

with the boundary conditions (1.%) and (1.5). By a well-known method this
latter is reduced to the single equation

*) If the problem for the layer 1s represented as the limit of appropriate
problems for cylinders with unboundedly increasing radil, then the limiting
form of the adheslon condition on the lateral surfdce of the cylinders is (1.5).
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AT = fige [ v (T, + T (1.18)
with perilodiclty boundary conditions and
= AT = AT, = 0 (z =0, h) (1.19)

Because v = I{,°, v; 1s an even function in x,, x, ; then, according
to (1.17), 7T 1s also even in xy, Xz . Hence, 7 should be sought in the

form ¢

T = 1 (2} co8 nkx; €08 Nofin, (1.20)
in which the function 7(z) is a solution of the elgenvalue problem

d? 3 R ) R

- ( dT 92) T = AT, Tomo,h =T — 0T n = 1" — 027" | ;g 5 =0

(1.21)

Y . Bgh2e

8 = (nik1)? + (naks)?, A== *’iv"

Here n,, n, are natural numbers. Exactly as in [2], it can be shown that

the Green's function of problem (1.21) 1s oscillatory {1t is the composition
of two symmetric oscillatory Green's functions). Hence, the spectrum of

problem (1.9) 1s a sequence of positive and prime eigenvalues

MO)<AG<...rO<... .
Thus, the spectrum of the problem (1.3) to (1.5) consists of the eigen-
1 * values
Cnaminy = T 20 = (uab)? o (make)?
(no, 11, 72 =1, 2,...) (1.22)

Ab——— If cpn, 1s 2 multiple elgen number, then natu-
i ral numbers (n,’, ny’, ny') == (N, Ry, ny), should
| also be found such that (1.23)

o

Cflonxﬂz = cna"l'mz"/ P (kl’ k2) = nﬂ:! - g2 =
8'2 == (fé;kl)g + (ng'kg)z
b L'y Let us fix the arbitrary numbers n,, n,’
(¢t =0, 1, 2) . Exactly as in [2] , it is shown

a that 1,(8) is an analytlc function on the ray
g > 0, and hence, the function o{k,, %,) 1s
analytic within the gquadrant {(%,> O , k,> 0} .
€ As in [ 2], the function ¢ may not be identically

zero. We thereby arrive at the followlng theorem.

Theorem 1.1 . For almost all palrs
(ky, %2) each of the eigen numbers ¢, 1s prime,
and this means 1t 1s a bifurcation point of (1.9}:
for values of ¢ close to Cpgpm, Equation (1.9),
and so problem (1.3) and (1.5), have a nontrivial solution.

Fig. 2

Here the expression "for almost all pairs {(%,, k,)" 1s understood in the
sense that on any analytic curve in the (kl, %;) plane there lies not more
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than a countable set of exclusive points,

As calculations show [3], the graph of the function A = %,{8) has the
form indicated in Fig.l. It 1is hence clear that in every case X, 1s a
bifurcation point.

2. Cellular conveotion. It is well known and easily discerned from
{(1.22) that secondary flows with diverse periodicity and symmetry correspond
to the very same critical value of the temperature gradient ¢ . In this
Section, secondary flows possessing -hexagonal symmetry are examined. For
such flows the layer 1s divided into regular hexagonal prisms, and the fluid
motion in all such prisms proceeds identically. These flows (designated
hexagonal or cellular convection) are of particular interest since precisely
these are observed in experiments [61; apparently cellular convection even
ocecurs in the Earth's atmosphere, resulting in the formation of certain kinds
of clouds.

Let @ be the side of a hexagonal cell (Fig.2). Then the perlods in
Xy, ¥z Should be 3a, a/3 , respectively. Moreover, the solution should be
invariant relative to rotation through an angle 2n/3 around the z-axis.
This latter demand reduces to the conditions 2.

T(gz, 2) =T (2, z), vs(ger, 2) =v3(2, 2z), W(gz, z)=gw(z, 1)
Here and henceforth, we use the notation: T = th xa; w ==(vl, vg;
¢ 1s the transformation of a rotation through the angle 2m/3 around the
z-axis (2.2)

8 (%, 2) = (gz, 2) = (z; cos *fsm — z, 8in 4|, z, sin 2fym + 2, cos ¥y, z)

We call the function Z2(x, z) (the vector v{(x, z) , correspondingly)
hexagonally symmetric if it satisfies condition (2.1) and is periodic in
X;, ¥z With the periods 3¢ , a/3 , respectively.

For the smooth function T{x, z) to possess hexagonal symmetry it is
necessary and sufficlient that it be expanded in the series
T (z, z) = 1/326(,1, z) [etk (1,0 | ik (n. ¢0) | pik (n, g7'7)]
(2.3)
n = (nb Ry V‘;)’ k= 2/3“1’“* c(n, z) = c(gn, z)

Here the sum extends over all possible pairs of integers n,, n, of the
same evenness (this follows from the requirement that the lattice (n,,n./3)
be transformed into itself by the transformation g¢). For the proof it is
enough to substitute a Fourler series of the function T into the equality

T(r,2) =1, T (2, 2) -+ T (gz, 2) - T (g™ z, 2)] (2.9
which results from {(2.1).

The coefficients c(n, 2) are determined uniquely by the function T .
The Fourler expansion of the hexagonal vectors may be considered analogously.

Let us now introduce the subspaces (, — H,°, (, — H.°, consisting,
respectively, of hexagonal vectors and functions.
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For any function 7 & (), the expansion (2.3) becomes

T (z, z) = Za (n, 2) Qpn, (2}, a(n, z) = algn, 2) (2.3)

Pp,n, (%) = cos (kn121) cos (kY 3n.zs) + cos flm — ';2) V3 X

cos k(ny + 7122) V; T2

k(n 3ng) x k(ny—3n)x
( 14} K + cos (m = 2) 21
The coefficlents a(n, z) are here real, and the summation is over all
possible pairs of natural numbers of the same evenness. For n,= ny,= 1 the
function ¢nﬂh(19 becomes

@y (2) = cos [k (z; + z, V3)] + cos [k (2, — z, V' 3)] + cos (2kz,) (2.6)
which is customarily (although without sufficiently rigorous foundation)
used to determine the sides of the hexagonal cell (mee [3], for example).

X €os

Lemma 2.1 . The operators X, 4, R operate in the subspace ¢,
and the operator ¥ from @, in @,

Proof . The transformation ¢ generates an operator 'y operating
on the function f(x, z) , and an operator T, operating on the vector
v(x, #) according to the rules
fe=Tof = f(gz, 2), vy =Tv=|{g"'w(gz, 2), v3(gz, 2)} (2.7)

Condition (2.1) for the hexagonal symmetry of the function J/ or the
vector Vv 18 now written as S =/, , v = v, . The relationships

Vig=TVh  Af,=(Af), T,(v -VT)=v, VT,
I‘g(v, V) v= (vg, VvV, Avg = (Av)g

are verified directly.

Let us consider the operator N as an example. Let VvE(Q;. Let us ?pply
the operator I, to 1.10) for S = v, . Utilizing the identities (2.8) and
taking into account that v,= v , we obtain

FAT, — v-VTg = v, (2.9)

(2.8)

E 1de?t1y the function I, satisfles the periodicity boupdary conditions
and (1.4). By virtue of the uniqueness of the solution (2.9) under these
conditions, I,’= T’; the evenness of the function T’ in x,, x; 1is evident
Lemma 1s proved.

Let us now consider (1.9) in the space @, . #s in Section 1, the corre-

sponding linearilized problem reduces to (1.17). Hexagonal solutions of this
latter are .
T, = T(2) P, (2), Vo, = L@BT, . 8) (2.10)

where n,, n, are any natural numbers of the same evenness; L 1s the oper-
ator defined in {(1.13), and the function 7(z) 1s the eigen solution of the
problem (1.21) for o2= (n2+ 3% )K°.

Reasoning further, exactly as 1in the proof of Theorem 1.1, we obtain the
following assertion,

Theorem 2.1 . For any value of the slde a of the hexagonal
cell enclosing some countable set, Equation (1.16) in @, has a sequence of
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positive prime elgenvalues, each of which 1s a bifurcation point of Equation
(1.9); for values of the parameter ¢ c¢lose to them Equation (1.9) (and
the problem (1.13) as well) has small nonzero hexagonal solutlons.

An analogous result may also be obtained for "triangular convection",

which 1g a particular case of hexagonal convectlon.
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